49 resultados para Arabidopsis

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae RAD1 and human XPF genes encode a subunit of a nucleotide excision repair endonuclease that also is implicated in some forms of homologous recombination. An Arabidopsis thaliana gene (AtRAD1) encoding the orthologous plant protein has been identified recently. Here we report the isolation of three structurally distinct AtRAD1 cDNAs from A. thaliana leaf tissue RNA. One of the isolates (AtRAD1-1) corresponds to the cDNA previously shown to encode the full-length AtRad1 protein, whereas the other two (AtRAD1-2, AtRAD1-3) differ slightly in size due to variations at the 5′ end of exon 6 or the 3′ end of exon 7, respectively. The sequence differences argue that these cDNAs were probably templated by mRNAs generated via alternative splicing. Diagnostic polymerase chain reaction pointed to the presence of the AtRAD1-1 and AtRAD1-2 but not AtRAD1-3 transcripts in bud and root tissue, and to a fourth transcript (AtRAD1-4), having both alterations identified in AtRAD1-2 and AtRAD1-3, in root tissue. However, the low frequency of detection of AtRAD1-3 and AtRAD1-4 makes the significance of these tissue-specific patterns unclear. The predicted AtRad1-2, AtRad1-3 and AtRad1-4 proteins lack part of the region likely required for endonuclease complex formation. Expression of AtRAD1-2 and AtRAD1-3 in a yeast rad1 mutant did not complement the sensitivity to ultraviolet radiation or the recombination defect associated with the rad1 mutation. These results suggest that alternative splicing may modulate the levels of functional AtRad1 protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis thaliana ecotype Columbia-0 was transformed with a green fluorescent protein (GFP) gene under control of a phenylalanine ammonia-lyase (PAL) promoter. PAL is a key enzyme of the phenylpropanoid pathway and is induced to high levels during plant stress. Constitutive expression of PAL1 promoter-controlled GFP occurred in vascular tissues within stems, leaves and roots and in developing flowers. PAL1 promoter–GFP expression was examined in leaves of transgenic plants subjected to an abiotic elicitor, mechanical wounding or to inoculation with the pathogens Pseudomonas syringae pv. tomato or Peronospora parasitica. Wounding of leaves and treatment with an abiotic elicitor and compatible interactions produced low to moderate levels of GFP. However, in incompatible interactions there were high levels of GFP produced. In incompatible interactions, the intensity of GFP fluorescence was similar to that produced in transgenic plants expressing GFP driven by the CaMV promoter. The bright green fluorescence produced in live cells and tissues was readily visualised using conventional fluorescence microscopy and was quantified using spectroflourometry. This is the first report of the use of GFP as a reporter of defence gene activation against pathogens. It has several advantages over other reporter genes including real time analysis of gene expression and visualisation of defence gene activation in a non-invasive manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phytohormone abscisic acid (ABA) plays a major role in the regulation of many physiological stresses although its role in pathogen-induced stress remains poorly understood. We examined the influence of ABA on interactions of Arabidopsis thaliana (L.) Heynh. (Arabidopsis) with a bacterial pathogen, Pseudomonas syringae pv. tomato and an Oomycete, Peronospora parasitica. Both addition of 100 μM ABA to plants and drought stress stimulated increased susceptibility of Arabidopsis to an avirulent isolate of P. syringae pv. tomato. In contrast, an ABA-deficient mutant of Arabidopsis, aba1-1, displayed reduced susceptibility to virulent isolates of P. parasitica. An ABA-insensitive mutant, abi1-1, that is impaired in ABA signal transduction did not alter in susceptibility to either P. syringae pv. tomato or P. parasitica. These results demonstrate that the concentration of endogenous ABA at the time of pathogen challenge is important for the development of susceptibility in Arabidopsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of reactions to inoculation with Phytophthora cinnamomi ranging from high susceptibility to moderate resistance were found in 20 ecotypes of Arabidopsis thaliana. P. cinnamomi zoospores successfully colonised both root and leaf tissue of Arabidopsis and sporulation in the form of chlamydospores and sporangia occurred in leaves and roots of each ecotype but the number varied considerably between ecotypes. In the more susceptible ecotypes, colonisation was characterised by rapid intercellular growth and sporulation of the pathogen from 48 h post inoculation. In less susceptible ecotypes, P. cinnamomi was limited to a defined region within tissues. In response to P. cinnamomi infection, several ecotypes expressed active defence responses in both root and leaf tissue. Callose formation was closely associated with lesion restriction as was the production of the reactive oxygen species, hydrogen peroxide. The oxidative burst was not limited to the site of pathogen ingress but also occurred in distant, uninfected tissues. We have characterised an Arabidopsis–P. cinnamomi system that will be useful for further studies of active resistance mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abscisic acid (ABA) has been implicated in determining the outcome of interactions between many plants and their pathogens. We had previously shown that increased concentrations of ABA within leaves of Arabidopsis induced susceptibility towards an avirulent strain of Pseudomonas syringae pathovar (pv.) tomato. We now show that ABA induces susceptibility via suppression of the accumulation of components crucial for a resistance response. Lignin and salicylic acid concentrations in leaves were increased during a resistant interaction but reduced when plants were treated with ABA. The reduction in lignin and salicylic acid production was independent of the development of the hypersensitive response (HR), indicating that, in this host-pathogen system, HR is not required for resistance. Genome-wide gene expression analysis using microarrays showed that treatment with ABA suppressed the expression of many defence-related genes, including those important for phenylpropanoid biosynthesis and those encoding resistance-related proteins. Together, these results show that resistance induction in Arabidopsis to an avirulent strain of P. syringae pv. tomato is regulated by ABA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phytohormone, abscisic acid (ABA) has been shown to influence the outcome of the interactions between various hosts with biotrophic and hemibiotrophic pathogens. Susceptibility to avirulent isolates can be induced by addition of low physiological concentrations of ABA to plants. In contrast, addition of ABA biosynthesis inhibitors induced resistance following challenge of plants by virulent isolates. ABA deficient mutants of Arabidopsis, such as aba1-1, were resistant to virulent isolates of Peronospora parasitica. In interactions of Arabidopsis with avirulent isolates of Pseudomonas syringae pv. tomato, susceptibility was induced following addition of ABA or imposition of drought stress. These results indicate a pivotal, albiet undefined, role for ABA in determining either susceptibility or resistance to pathogen attack. We have found that the production of the cell wall strengthening compound, lignin, is increased during resistant interactions of aba1-1 but suppressed in ABA induced susceptible interactions. Using RT-PCR and microarray analysis we have found down-regulation by ABA of key genes of the phenylpropanoid pathway especially of those genes involved directly in lignin biosynthesis. ABA also down-regulates a number of genes in other functional classes including those involved in defence and cell signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phytohormone, abscisic acid (ABA) has been shown to influence the outcome of the interactions between various hosts with biotrophic and hemibiotrophic pathogens. Susceptibility to avirulent isolates can be induced in plants by addition of low physiological concentrations of ABA. In contrast, addition of ABA biosynthesis inhibitors induced resistance following challenge of plants by virulent isolates. ABA deficient mutants of Arabidopsis, such as aba1-1, were resistant to virulent isolates of Peronospora parasitica. In interactions of Arabidopsis with avirulent isolates of Pseudomonas syringae pv. tomato, susceptibility was induced following addition of ABA or imposition of drought stress. These results indicate a pivotal, albiet undefined, role for ABA in determining either susceptibility or resistance to pathogen attack. We have found that the production of the cell wall strengthening compound, lignin, is increased during resistant interactions of aba1-1 but suppressed in ABA-induced susceptible interactions. Using RT-PCR and microarray analysis we have found down-regulation by ABA of key genes of the phenylpropanoid pathway especially of those genes involved directly in lignin biosynthesis. ABA also down-regulates a number of genes in other functional classes including those involved in defence and cell signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clubroot, caused by Plasmodiophora brassicae, is the most devastating soil-borne disease of vegetable brassicas. It occurs all over the world and is responsible for crop losses of up to 10% every year. In Australia, the disease is being managed effectively with chemicals and cultural practices, but ideally control can be improved in the long term by the introduction of resistant cultivars. The life cycle ofP. brassicae and mode of action of plant resistance has not been fully elucidated because of the technical difficulties of working with an obligate, soil-borne plant pathogen. However, Arabidopsis thaliana, which is a host ofP. brassicae, has great potential as a model system for studying the life cycle, the infection process and development of resistance. We have developed a sand-liquid-culture system for growing Arabidopsis that allows easy observation of all life stages and, most importantly, the primary plasmodial stages within the root hair. The method was first optimised for observations of the lifecycle of the pathogen in a susceptible Arabidopsis ecotype (Col-3) where all stages of the lifecycle have now been observed and characterised. Further screening of Arabidopsis ecotypes for disease resistance has utilised one of the most virulent Australian pathotypes of brassica (ECD number 16/19/31). To date, Arabidopsis ecotype Ta-0 has shown a level of tolerance to the disease even though the roots get infected. It has been reported earlier that resistance toP. brassicae in Arabidopsis is due to one or a small number of genes. To examine changes in gene expression during the early, critical stages of infection, RNA was extracted from the susceptible and resistant ecotypes at two time points, 4 days and 17 days after inoculation. Microarray analysis will be used to investigate genome wide changes in gene expression during infection but also to identify candidate genes that may confer resistance to Australian isolates of the pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found that UV-C treatment of Arabidopsis thaliana induces resistance to the biotrophic pathogen Hyaloperonospora parasitica, and our data suggest UV induced DNA photoproducts are involved (see accompanying abstract by K.G. McKenzie et al.). To address the potential role of DNA damage, we have examined the effect of mutations in nucleotide excision repair (uvr1-1), photoreactivation of cyclobutane pyrimidine dimers (uvr2-1) or flavonoid production (tt5) on the resistance of Arabidopsis to the pathogen with or without pre-inoculation treatment with UV-C. In the mutant backgrounds, UV-C induced pathogen resistance (as measured by decreased conidiophore formation) to the same degree as in the wildtype plants, but much lower UV doses were required (e.g., 100 Jm-2 in the mutant vs. 400 Jm-2 in the wildtype). This is the result expected if damage to DNA rather than a non DNA target is involved. Interestingly, in the absence of UV-C, the tt5 mutation alone resulted in a slight increase in resistance. However, when coupled with uvr1-1, resistance was enhanced to an even greater extent. Remarkably, the tt5 uvr1-1 uvr2-1 triple mutant was completely resistant to the pathogen. Since tt5 mutants are sensitive to reactive oxygen species, which can cause DNA damage susceptible to nucleotide excision repair, our results suggest that in addition to UV photoproducts, an accumulation of endogenous oxidative DNA damage may also trigger resistance to the pathogen. We are currently examining pathogen resistance in other DNA repair deficient mutants, and quantifying UV-C-induced DNA damage in Arabidopsis in order to assess the relationship between damage levels and the extent of resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodiophora brassicae is a protistan pathogen that attacks roots of brassicaceous plant species causing devastating disease. Resistance is characterised by restriction of the pathogen and susceptibility by the development of severely malformed roots (‘clubroots’) and stunting of the plant that is associated with alterations in the synthesis of cytokinin and auxin hormones. We are examining the susceptible response in Arabidopsis and whether suppression of key resistance factors by the pathogen contributes to susceptibility. The interaction is being studied using a number of approaches including microscopy of the infection process and development of the pathogen within roots and host gene expression analysis. Quantitative PCR was used to confirm the timing of infection of roots and showed that infection occurred at day four and colonisation increased thereafter to high levels by 23 days after inoculation by which time roots were showing systemic abnormalities. To investigate the basis of this compatible interaction we have conducted a time course experiment following infection of a susceptible ecotype of Arabidopsis (Col-0) to examine whole genome geneexpression changes in the host. Differential gene expression analysis of inoculated versus control roots showed that a higher number of genes had altered expression levels at day four compared to that at day seven and at day ten. At day four the expression levels of several genes known to be important for recognition and signal transduction in resistant interactions and genes involved in the biosynthesis of lignin, phenylpropanoids and ethylene were suppressed. Suppression by P. brassicae of specific plant defence responses appears to be a key component of susceptibility in this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to their sessile nature, plants have evolved mechanisms to minimise the damaging effects of abiotic and biotic stresses. Attack by pathogenic fungi, viruses and bacterium is a major type of biotic stress. To resist infection, plants recognise invading pathogens and induce disease resistance through multiple signal transduction pathways. In addition, appropriate stimulation can cause plants to increase their resistance to future pathogen attack. We have found that exposure to non-lethal doses of UV-C (254 nm) renders a normally susceptible ecotype of Arabidopsis thaliana resistant to the biotrophic Oomycete pathogen Hyaloperonospora parasitica. The UV treatment induces an incompatible response in a dose-dependent fashion, and is still effective upon pathogen inoculation up to seven days after UV exposure. The degree of resistance diminishes with time but higher doses result in greater levels of resistance, even after seven days. Furthermore, the effect is systemic, occurring in parts of the plant that have not been irradiated. Incubation in the dark post?irradiation and prior to infection reduces the UV dose required to generate a specific level of pathogen resistance without affecting the duration of resistance. These observations, plus the inability of plants to photoreactivate UV photoproducts in the dark, strongly suggest that DNA damage induces the resistance phenotype. Currently, we are assessing the influence of DNA repair defects on UV-induced resistance, following the expression of a number of defence?related genes post-UV-C irradiation, and assessing the effect of UV in plant mutants deficient in specific signalling molecules involved in resistance.